
CSCI 0220 Discrete Structures and Probability R. Lewis

Recitation 2

Logic and Lean

SRC

This recitation will start off with an SRC activity led by the TAs! Here are some
important links as you follow along:

• Slides [http://tinyurl.com/7tna54nb]

• Twitter Github (full) [http://tinyurl.com/3ry7neum]

• Twitter Github (current, censored) [http://tinyurl.com/49v2n5t4]

Review

In Recitation 1, we started discussing logical equivalences and propositions. Recall
some of the terminology for logic, most of which we talked about last week:

1. A proposition is a statement that evaluates to true or false. For example,
“grass is green” is a proposition.

2. A propositional variable is a symbol that represents a proposition. Propo-
sitional variables are assigned truth values (‘true’ or ‘false’). For example, if
we let p represent the proposition “grass is green,” then p is a propositional
variable.

3. A propositional formula can be constructed from atomic propositions via
logical connectives. The truth value of a propositional formula can be calcu-
lated from the truth values of the atomic propositions it contains.

4. The term logical expression is often used synonymously with the word propo-
sition.

5. Two propositions are logically equivalent when they have the same truth
tables.

6. A proposition is valid if it evaluates to true on any choice of inputs; it is
true no matter what. That is, a valid proposition is logically equivalent to the
expression (p ∨ ¬p). This is also called a tautology.
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7. A proposition is satisfiable if it evaluates to true on some choice of inputs. A
valid proposition is satisfiable, but so are many propositions which sometimes
evaluate to false.

8. If a proposition is not satisfiable, it evaluates to false on any choice of inputs;
it is false no matter what. That is, it is logically equivalent to the expression
(p ∧¬p). This is called a contradiction.
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Normal Forms

We say a proposition is in DNF (disjunctive normal form) when it is the disjuc-
tion (clauses Ored together) of conjuctions (terms Anded together).

We say a proposition is in CNF (conjunctive normal form) when it is the con-
juction (clauses Anded together) of disjuctions (terms Ored together).

Here’s a truth table, and propositions in DNF and CNF which represent it:

p q r ?
T T T F
T T F T
T F T F
T F F T
F T T F
F T F F
F F T T
F F F T

DNF: (p ∧ q ∧ ¬r) ∨ (p ∧ ¬q ∧ ¬r) ∨ (¬p ∧ ¬q ∧ r) ∨ (¬p ∧ ¬q ∧ ¬r)

CNF: (¬p ∨ ¬q ∨ ¬r) ∧ (¬p ∨ q ∨ ¬r) ∧ (p ∨ ¬q ∨ ¬r) ∧ (p ∨ ¬q ∨ r)

If we have an arbitrary truth table, here are two ways we can think about describing
it:

• Listing the true rows

• Listing the false rows

Since every row must be either true or false, both of these ways will uniquely describe
our truth table.

These two ways correspond to DNF and CNF, respectively. To write a proposition in
DNF, we can think about it like this: we find all rows where our proposition should
evaluate to true, and we say that we must be in one of those rows. On the other
hand, to write a proposition in CNF, we find all rows where our proposition should
evaluate to false, and say we are not in any of those rows.
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Task: How do we specify that we are in one of the true rows (DNF)? How do we
specify that we are not in any of the false rows (CNF)?

Hint : Look at the DNF and CNF representations of the truth tables above. How do
they relate to this idea?

Task: Write two propositions corresponding to the following truth table: one in
DNF and one in CNF.

p q r ?
T T T T
T T F T
T F T F
T F F T
F T T T
F T F F
F F T F
F F F T

v Checkpoint 1 — call over a TA!
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First-Order Logic

The language of propositional logic that we’ve used so far has been limited to atomic
statements that are either true or false. But now let’s consider, for instance, the
following statement:

x is divisible by 22

It makes sense if x is an integer, such as 44 or 50, but it doesn’t make sense at all
if x is a dinosaur named Fred. In any case, even when it does make sense, its truth
value depends on x; indeed, ‘44 is divisible by 22’ is a true proposition, but ‘44 is
divisible by 50’ is a false proposition.

To represent statements with variables like x, we introduce the notion of predicates. A
predicate is a statement whose truth depends on the value of one or more variables.
The domain of a predicate variable is the collection of all possible values that the
variable may take.

Going back to the example above, ‘x is divisible by 22’ is not a proposition by
itself, but it becomes a proposition when specific integers (such as 44 or 50) are
substituted for x. In other words, we can represent the statement ‘x is divisible
by 22’ as a predicate p(x) such that x has a domain of Z; then, p(44) is the true
proposition ‘44 is divisible by 22’ and p(50) is the false proposition ‘50 is divisible by
22’.

A quantifier is a symbol that denotes how many elements of a set make a statement
true. There are two main quantifiers that we will focus on: universal quantifier ∀
and the existential quantifier ∃. Universal quantification asserts that a predicate is
always true. Existential quantification asserts that a predicate is sometimes true.
Formally, the expression ‘∀x : X’ denotes ‘for all x in X’ and ‘∃x : X’ denotes ‘there
exists x in X’.

Task

Consider the following sentence: “If a CS22 student can solve any problem from class,
then they will get an A.” Notice how this could have a double meaning? The phrase
“a CS22 student can solve any problem from class” can be reasonably interpreted as
either (1) the student can solve all problems from class or (2) the student can solve
at least one problem from class.

Define variables and represent each of these interpretations in mathematical lan-
guage. (Hint: One will start with the universal quantifier, the other will start with
the existential quantifier.)
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Task

Using the variables you defined above, convert the following English sentences into
formulas:

a. There exists a CS22 problem that is unsolvable.

b. There exists a CS22 student who cannot solve at least one CS22 problem.

c. If all CS22 students get an A, then there is some CS22 problem that can be
solved by all CS22 students.

d. If all CS22 problems can be solved by at least one student, then at least one
student will get an A.

Why First-Order Logic?

The language of propositional logic that we learned last week is not expressive enough
to talk about real concepts in math or computer science. Consider the proposition,
“every Python program runs without crashing.” Not very plausible!

But, it implies the proposition “the Python program print "Hello world!" runs
without crashing,” for instance. With quantifiers and variables, we can now dive
deeper into real concepts in math or computer science. For example, let P de-
note the set of Python programs, and let R(x) mean “program x runs without
crashing.” Our sentences can then be respectively translated to ∀x : P,R(x) and
R(print "Hello world!").

We could even prove the implication
(
∀x : P,R(x)

)
→ R(print "Hello world!").

Task

Let the following symbols be defined as:

• P : the set of Python programs. (You can use this as the domain for quantifiers.)

• Predicate symbols represent predicates with variable placeholders that can be
filled in with any term (Recall that once a variable is assigned, it represents a
proposition):

– R(x): “program x runs without crashing”

– T (x): “program x terminates” (i.e. doesn’t run forever)
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– C(x, y): “program x calls program y”

– Familiar mathematical relations, like <, ≤, =

• Function symbols take in terms as arguments and output new terms:

– l(x): the number of lines of code in program x

• Constant symbols are terms:

– 0, 1, 2, ... are constant symbols

– hw is a constant symbol representing the “Hello world” program print

"Hello world!".

– mp is a constant symbol representing the Python program I’m writing
right now.

For a first example: we could translate the sentence “There is a program with fewer
than 10 lines of code that does not terminate” to ∃y : P, (l(y) < 10) ∧ ¬T (y).

Now, translate the sentences below using the symbols above.

a. Every program with fewer than 10 lines of code terminates.

b. There is a program that doesn’t crash but never terminates.

c. The “Hello world” program is the shortest program.

d. The Python program I’m writing right now does not crash, and only calls
programs that terminate.

e. Every program calls another program.

f. Some program is called by every program. (What’s the difference between this
and the previous one?)

Task

Thought you were done? Try again! It’s very common with these types of translations
that there are multiple ways to translate any English sentence into logic. Go back
and see if you can find an alternate “phrasing” for two of your above answers that
seems to capture the same meaning.

Can you see a general pattern in the way you rephrased your answer? Talk it over
for a few. (If not, that’s okay. We’ll come back to this in class soon enough.)
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v Checkpoint 2 — call over a TA!
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Lean

A real number q is defined to be rational if it is equal to the quotient of two integers
that have no factors in common.

An integer k is divisible by d if there exists an integer m such that k = m · d.

Theorem.
√
3 is not rational.

Proof.

1. Suppose, for the sake of contradiction, that
√
3 is rational. We wish to find a

contradiction.

2. This means that
√
3 is equal to the quotient of two integers that have no factors

in common.

3. Call these integers n and d; then
√
3 = n

d
, and n and d have no factors in

common.

4. Squaring both sides, we know that 3 = n2

d2
.

5. Multiplying across, we know that 3d2 = n2.

6. Since n2 is divisible by 3, n must be divisible by 3.

7. Let n1 be the integer such that n = 3 · n1.

8. By substitution, we have that 3d2 = 9n2
1.

9. Cancelling 3, we have d2 = 3n2
1.

10. Thus d must be divisible by 3.

11. From steps 6 and 10, n and d have a factor of 3 in common.

12. This contradicts our assumption in step 2, completing our proof.

Done!

Task

a. What logic proof rules can you identify in this informal proof? (And intro,
negation intro, ...?)

b. What Lean tactics do these correspond to? What steps in this proof do not
have corresponding Lean tactics, from what we’ve seen so far in class?
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c. After proof step 1, what does the context of our proof look like? What is the
goal? You can write it in “fake Lean” notation: don’t worry about the syntax,
but show us an “infoview” ;)

d. After proof step 7, what does the context of our proof look like? What is the
goal?

e. What about after step 11?

v Final checkoff — call over a TA!
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