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Division theorem

Theorem: Let n and d > 0 be integers. There exists a unique pair of integers q and r,
such that n = q · d + r and 0 ≤ r < d.

q = qcnt(n, d) is the quotient, r = rem(n, d) is the remainder. I’d call them “integer
division” and “mod”.

Examples:
qcnt(2716, 10) = 271. Since 2716 = 271 · 10 + 6
rem(2716, 10) = 6. Same reason.
rem(−11, 7) = 3. Since −11 = −2 · 7 + 3
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Definitions

Definition: c is a common divisor of a and b if c|a and c|b.

Example: 2 is a common divisor of 24 and 54.

Definition: c is the greatest common divisor (GCD) of a and b if c is a common divisor of a
and b and no other common divisor is larger.

Example: 6 is the greatest common divisor of 24 and 54.

What’s the greatest common divisor of 0 and 0?
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A not-so-good algorithm for GCD

def gcd(a,b):
biggest = 0
n = max(a, b)
for i ∈ [0, n]:

if i|a AND i|b AND i > biggest: biggest = i
return(biggest)

Is it correct? Sure, it checks every value and returns the biggest. Except at (0, 0)...

Is there at least one common divisor? Well, 1 should always work.

Running time? n, which might be quite big.
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Another not-so-good algorithm for GCD

def gcd(a,b):
l1 = prime factors of a
l2 = prime factors of b
k = 1
while l1 and l2 have a number x in common:

remove x from l1 and l2
k = k ∗ x

return(k)

Is it correct? Yes, the GCD can be constructed by collecting all the common prime
factors.

Running time? The bottleneck is factoring, which can take up to time n, which might be
quite big.
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Wait, do we have to go up?

def gcd(a,b):
n = min(a, b)
for i ∈ n down to 1:

if i|a and i|b: return(i)

Is it correct? Sure, it tries the biggest possible value first and goes down until it works.
Must be biggest, must work, must terminate (1).

Running time? Still could be n, too big.
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Visual insights

Consider an a× b rectangle.

We can tile the rectangle with c× c squares if and only if c is a common divisor of a and
b.

So, gcd(a, b) is the size of the biggest square that covers the a× b rectangle.
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Special case
Let a be the smaller of a and b, without loss of generality. That just means we can make
this assumption safely. Why? Because we can just rename the two values—there are no
other constraints.

How can we check if a = gcd(a, b)? If rem(b, a) = 0! Examples:

1, 3, 2, 6, are common divisors of 6 and 12. 4 is not.
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Algorithm?

def gcd(a,b):
if a|b: return a

Is it correct? Yes, if it returns something. But, might not, which is bad.

Running time? One step!
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Another case: Difference
Consider gcd(16, 24). Our rule doesn’t work because 16 doesn’t divide 24 evenly. But
24 − 16 = 8 does. Does that help?

Since 24 − 16 divides 16 evenly, it must also divide 24 evenly. Note the 16 × 16 square.
The 8 × 8 square fits on one side of it. But, it’s a square, so it fits on the other side, too.
It’s a common divisor. Could there be a larger one? No. It would have to divide 16 evenly
(green), so it would cover green. So, it would have to cover pink, too. Pink square is the
biggest such square.
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Sneaking up on an idea

Make as many big a× a squares as possible. The biggest square that covers the leftover
rectangle is necessarily the biggest square the covers the original rectangle.

Why? It has to evenly divide both sides.

So, solve the smaller problem and we solve the bigger problem.
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Sneaking up on an idea (2)

gcd(9, 24)
= gcd(6, 9)
= gcd(3, 6)
= 3, by the original special case.
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Remainder lemma
Lemma: When a ≤ b, gcd(a, b) = gcd(rem(b, a), a).

Proof: Write b = q · a+ r where r = rem(b, a). Why? Division theorem. So, b is a linear
combination of a and r, which implies that any divisor of a and r is a divisor of b. Why?
Integer linear combination property.

Similarly, r is a linear combination of a and b, specifically r = 1 · b− q · a. Thus, any
divisor of a and b is a divisor of r. Why? Integer linear combination property, again.

So, a and b have the same common di-
visors as a and r. They must also then
have the same greatest common divi-
sor. QED.
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Euclid’s algorithm

def gcd(a,b):
if a = 0: return(b)
else: return(gcd(rem(b, a), a))

Is it correct? Yes, by the remainder lemma.

Running time? Notice that rem(b, a) ≤ b/2. That’s because rem(b, a) ≤ a, so if
a ≤ b/2, it holds. Otherwise, rem(b, a) = b− a ≤ b/2. Therefore, the “a” parameter is
at least halved every 2 iterations. So, in 1 + 2 log a iterations, terminates.
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Example

gcd (1687, 2791)
= gcd(1104, 1687)
= gcd(583, 1104)
= gcd(521, 583)
= gcd(62, 521)
= gcd(25, 62)
= gcd(12, 25)
= gcd(1, 12)
= gcd(0, 1)
= 1
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