The Binomial Theorem (14.7)

Inclusion-Exclusion (14.9)

Binomial Theorem, Inclusion/Exclusion

Robert Y. Lewis

CS 0220 2024

March 22, 2024

The Binomial Theorem (14.7)

Inclusion-Exclusion (14.9)

Overview

1 Reminder: counting subsets

- 2 The Binomial Theorem (14.7)
- 3 Inclusion-Exclusion (14.9) Sets of permutations

The Binomial Theorem (14.7)

Inclusion-Exclusion (14.9)

Choice

The number of *k*-element subsets of an *n*-item set. "*n* choose *k*".

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

 $\binom{n}{k}$

Binomials to powers: Examples

$$(a+b)^2 = aa+ab+ba+bb$$

= $a^2+2ab+b^2$

$$(a+b)^3= aaa+aab+aba+abb\ + baa+bab+bba+bbb\ = a^3+3a^2b+3ab^2+b^3$$

$$(a+b)^4 = aaaa + aaab + aaba + aabb + abaa + abab + abba + abbb + baaa + baab + baba + babb + bbaa + bbab + bbba + bbbb = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$$

How about $(a + b)^n$? How many terms consist of exactly *k* bs? Since it's all combinations of an *a* and *b* in each position, there are $\binom{n}{k}$ such terms.

The Binomial Theorem (14.7) ○●○ Inclusion-Exclusion (14.9)

Binomial theorem

Theorem: For all $n \in \mathbb{N}$, $a, b \in \mathbb{R}$,

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k.$$

Sometimes $\binom{n}{k}$ called the *binomial coefficient* because of this connection.

The Binomial Theorem (14.7) ○○● Inclusion-Exclusion (14.9)

Pascal's Triangle

n = 0							1							
n = 1						1		1						
<i>n</i> = 2					1		2		1					
<i>n</i> = 3				1		3		3		1				
<i>n</i> = 4			1		4		6		4		1			
<i>n</i> = 5		1		5		10		10		5		1		
<i>n</i> = 6	1		6		15		20		15		6		1	

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

The Binomial Theorem (14.7)

Pets and sets

S: Set of all students in CS0220.

- $D \subseteq S$: Set of all students in CS0220 who have a pet dog.
- $C \subseteq S$: Set of all students in CS0220 who have a pet cat.

 $D \cup C$: Set of all students in CS0220 who have a pet dog *or* cat.

 $|D \cup C| = |D| + |C|$? Handles people who have neither correctly. Handles people who have one kind of pet correctly. Messes up on people who have both.

The Binomial Theorem (14.7)

Formulas for union

What's wrong with each formula for $|C \cup D|$?

- |C| + |D|? Double counted people who have both.
- $|C \setminus D| + |D \setminus C|$? Skipped people who have both.
- $|C \setminus D| + |D \setminus C| + |C \cap D|$? Actually, that should work. But, set difference can be tricky.
- $|C| + |D| |C \cap D|$? Nailed it. Correct for double counting

Inclusion-Exclusion rule for two sets

```
Rule: For two sets S_1 and S_2,
```

$$|S_1 \cup S_2| = |S_1| + |S_2| - |S_1 \cap S_2|.$$

Example:

- $S_1 = \{ Allie, Tyler \}$: HTAs with an *l* in their name.
- $S_2 = \{$ Allie, Jania $\}$: HTAs with an *i* in their name.
- $S_1 \cap S_2 = \{ Allie \}$: HTAs with both an *i* and an *l* in their name.
- $S_1 \cup S_2 = \{$ Jania, Allie, Tyler $\}$: HTAs with either an *i* or an *l* in their name.
- $\blacksquare |\{ \text{ Jania, Allie, Tyler } \}| = |\{ \text{ Allie, Tyler } \}| + |\{ \text{ Allie, Jania } \}| |\{ \text{ Allie } \}|$

The Binomial Theorem (14.7)

Inclusion-Exclusion (14.9)

Generalize to three sets

S: Set of all students in CS0220.

- $D \subseteq S$: Set of all students in CS0220 who have a pet dog.
- $C \subseteq S$: Set of all students in CS0220 who have a pet cat.
- $B \subseteq S$: Set of all students in CS0220 who have a pet bunny.

How express $|B \cup C \cup D|$ in terms of size of *intersections* of sets?

The Binomial Theorem (14.7)

Inclusion-Exclusion (14.9)

Visual analysis

$|B \cup C \cup D| = |B| + |C| + |D| - |B \cap C| - |B \cap D| - |C \cap D| + |B \cap C \cap D|$

Inclusion-Exclusion rule for three sets

Rule: For three sets S_1 , S_2 , S_3 ,

$$\begin{split} |S_1 \cup S_2 \cup S_3| = & |S_1| + |S_2| + |S_3| \\ & -|S_1 \cap S_2| - |S_1 \cap S_3| - |S_2 \cap S_3| \\ & +|S_1 \cap S_2 \cap S_3|. \end{split}$$

Example:

- $S_1 = \{$ Jania, Allie, Carmen $\}$: HTAs with an *a* in their name.
- $S_2 = \{$ Allie, Joseph, Carmen, Tyler $\}$: HTAs with an *e* in their name.
- $S_3 = \{ \text{ Jania, Allie } \}$: TAs with an *i* in their name.
- $S_1 \cap S_2 \cap S_3 = \{ Allie \}$: TAs with an *a* and an *e* and an *i* in their name.
- |{ Jania, Allie, Joseph, Carmen, Tyler }| = |{ Jania, Allie, Carmen }|+
 |{ Allie, Joseph, Carmen, Tyler }| + |{ Jania, Allie }| |{ Allie, Carmen }|
 -|{ Jania, Allie }| |{ Allie }| + |{ Allie }|

Sets of permutations

Sets of permutations

In how many permutations of the set $\{0,1,2,\ldots,9\}$ do either 4 and 2, 0 and 4, or 6 and 0 appear consecutively?

Which of these permutations has this property?

- (4, 6, 5, 0, 1, 8, 3, 2, 9, 7) nope.
- **(**0,4,6,1,8,5,9,3,7,2**)** 04!
- **(**3,4,2,0,5,6,1,9,8,7) 42!
- (3,9,4,1,2,7,0,5,6,8) nope.
- (0, 2, 6, 3, 7, 8, 4, 9, 5, 1) nope.

 P_{60} : permutations of 0 through 9 that contain 60.

 P_{04} : permutations of 0 through 9 that contain 04.

 P_{42} : permutations of 0 through 9 that contain 42.

Want: $|P_{60} \cup P_{04} \cup P_{42}|$.

Sets of permutations

Inclusion-exclusion, constrained permutation

$$\begin{aligned} |P_{60} \cup P_{04} \cup P_{42}| \\ &= |P_{60}| + |P_{04}| + |P_{42}| \\ &- |P_{60} \cap P_{04}| - |P_{42} \cap P_{04}| - |P_{60} \cap P_{42}| \\ &+ |P_{60} \cap P_{04} \cap P_{42}| \\ |P_{60}| =? \end{aligned}$$

Clever trick: In P_{60} , can view "60" as a unit. So, each element of P_{60} is a permutation of $\{1, 2, 3, 4, 5, 7, 8, 9, 60\}$. Therefore, $|P_{60}| = 9!$. $|P_{04}| = 9!$. $|P_{42}| = 9!$.

The Binomial Theorem (14.7)

Inclusion-Exclusion (14.9)

Sets of permutations

Pairwise intersections

$$\begin{split} |P_{60} \cup P_{04} \cup P_{42}| \\ &= |P_{60}| + |P_{04}| + |P_{42}| \\ &- |P_{60} \cap P_{04}| - |P_{42} \cap P_{04}| - |P_{60} \cap P_{42}| \\ &+ |P_{60} \cap P_{04} \cap P_{42}| \\ &= 3 \times 9! \\ &- |P_{60} \cap P_{04}| - |P_{42} \cap P_{04}| - |P_{60} \cap P_{42}| \\ &+ |P_{60} \cap P_{04} \cap P_{42}| \end{split}$$

 $|P_{60} \cap P_{04}| =$? Trick works again! Can view "604" as a unit. So, each element is a permutation of $\{1, 2, 3, 5, 7, 8, 9, 604\}$. Therefore, 8!.

 $|P_{42} \cap P_{04}| =$? Trick works again! Can view "042" as a unit. So, 8!.

 $|P_{60} \cap P_{42}| =$? Trick fails! Wait, no, just changes. Now, each element is a permutation of $\{1, 3, 5, 7, 8, 9, 60, 42\}$. Still 8!.

The Binomial Theorem (14.7)

Inclusion-Exclusion (14.9)

Sets of permutations

Three-way intersection

$$\begin{aligned} |P_{60} \cup P_{04} \cup P_{42}| \\ &= |P_{60}| + |P_{04}| + |P_{42}| \\ -|P_{60} \cap P_{04}| - |P_{42} \cap P_{04}| - |P_{60} \cap P_{42}| \\ &+ |P_{60} \cap P_{04} \cap P_{42}| \\ &= 3 \times 9! - 3 \times 8! \\ +|P_{60} \cap P_{04} \cap P_{42}| \end{aligned}$$

 $|P_{60} \cap P_{04} \cap P_{42}| =$?. Yay, trick works again! Can view "6042" as a unit. So, each element is a permutation of {1, 3, 5, 7, 8, 9, 6042}. Therefore, 7!.

 $|P_{60} \cup P_{04} \cup P_{42}| = 3 \times 9! - 3 \times 8! + 7! = 972720.$

Sets of permutations

n-way Inclusion-Exclusion

 $|S_1 \cup S_2 \cup \cdots \cup S_n| =$

the sum of the sizes of the individual setsminusthe sizes of all two-way intersectionsplusthe sizes of all three-way intersectionsminusthe sizes of all four-way intersections

plus the sizes of all five-way intersections, etc.

Hyper-mathy version:

$$\left| \bigcup_{i=1}^{n} S_{i} \right| = \sum_{X \in \mathcal{P}\left([1,n] \right) - \emptyset} (-1)^{|X|+1} \left| \bigcap_{i \in X} S_{i} \right|$$