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The proof game, revisited

Remember our setup from last class:

At any point in a proof, we have some goals and their corresponding contexts.

A goal is a proposition that we want to prove.
A context is a list of hypotheses, propositions that we know.

We complete a proof by repeatedly transforming these goals and hypotheses by
applying proof rules, which are individual reasoning steps.
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Introduction rules, revisited

Introduction rules were valid based on the shape of the goal.

To prove A ∧ B, it suffices to prove A, then to prove B.
To prove A ∨ B, it suffices to prove A.
To prove A ∨ B, it suffices to prove B.
. . .

These proof rules update the goal without changing the context. Contrast:

To prove A → B, it suffices to prove B, using the extra hypothesis A.
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"And" Elimination

If you know P ∧ Q, you know two things:
P
Q

Yes, this sounds silly to say out loud. We usually don’t think about this.

In terms of proof state: turns one hypothesis into two smaller hypotheses.
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"Or" Elimination

This one’s more interesting!

If you know P ∨ Q, and your goal is G, you can reason by cases. That is: if you show
P → G, and you show Q → G, then you have shown G.

In terms of proof state: creates two goals, each with a new hypothesis.
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Implication Elimination: modus ponens

If x is prime, then x ≥ 2. x is prime. Therefore, x ≥ 2.

General pattern: if you know P → Q and you know P, then you know Q.

Adds a hypothesis.

Alternate phrasing: if your goal is to show Q, and you know P → Q, it suffices to show P.

Changes the goal.

(Iff elimination is easy: if you know P ↔ Q, then you know P → Q and Q → P.)
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In Lean

Introduction rules in Lean:
and elim: eliminate h with h1 h2

or elim: eliminate h with h1 h2

implication elim: have hb := hab ha

iff elim: eliminate h with h1 h2
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Getting comfortable with contradiction

We live in a world where things make sense. (...)

In our sensible world, some statements are true and some are false. But none are true
and false.

So if we can prove both a proposition and its negation, we’re living in nonsense land.
Anything follows.
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Negation elimination and introduction

Negation elimination: if you know P and you know ¬P, you can prove anything (i.e.
close any goal).

Negation introduction: if your goal is to prove ¬P, you can assume P, and show "false".
"Proof by contradiction!"
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Example proof by contradiction

Proposition:
√

2 is not rational.

We prove that
√

2 is not rational by contradiction. Suppose
√

2 is rational. By the
definition of “rational”, that means

√
2 = p/q where p and q are integers. Furthermore,

we can choose p and q to be in lowest terms so they have no factors in common.
Squaring both sides, we get 2 = p2/q2 or 2q2 = p2. Since q2 is an integer, and p2 is an
integer times 2, p2 is even. By a similar argument to the one for odd squares (from a few
lectures ago), that means p must be even. If p is even, p2 must be divisible by 4. Since
2q2 is divisible by 4, q2 must be divisible by 2 (the other factor of two must be there).
That means both p and q are even. But, then p/q is not in lowest terms. Since we
already asserted that p/q is in lowest terms when p and q were chosen, we’ve reached a
contradiction. Therefore,

√
2 must be irrational.
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A subtlely different proof by contradiction

From the last slide: if your goal is to prove ¬P, you can assume P, and show "false".

Compare to:

Proof by contradiction: if your goal is to prove P, you can assume ¬P, and show "false".
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Validity (3.3.2)

Back to truth for a moment!
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Validity (3.3.2)

DeMorgan’s Law

These two statements are equivalent:
¬(P ∧ Q)
¬P ∨ ¬Q

They are equivalent because they have exactly the same truth table. (Or, because we
can prove ¬(P ∧ Q) ↔ (¬P ∨ ¬Q).) You can think of this as negation “distributing” over
AND, negating the inputs and switching the AND to OR.
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Validity (3.3.2)

Equivalence and validity: Definitions

A formula can be thought of as a function mapping variable assignments to truth
values. Each row of the truth table shows one input and its corresponding output.

Definition: Two formulas over the same set of variables are equivalent if they evaluate to
the same truth value under every variable assignment.

Definition: A formula is valid if it is always true regardless of variable assignment.

Example: P ∨ ¬P

P ¬P P ∨ ¬P
F T T
T F T
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Validity (3.3.2)

Equivalence and validity

A formula is valid iff it is equivalent to T.

Two formulas α and β are equivalent iff α ↔ β is valid.

Example: Show “P” is equivalent to “¬¬P”.

P ¬P ¬¬P P ↔ ¬¬P
F
T
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Validity (3.3.2)

Equivalence and validity

A formula is valid iff it is equivalent to T.

Two formulas α and β are equivalent iff α ↔ β is valid.

Example: Show “P” is equivalent to “¬¬P”.

P ¬P ¬¬P P ↔ ¬¬P
F T
T F
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Two formulas α and β are equivalent iff α ↔ β is valid.
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F T F
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Validity (3.3.2)

Equivalence and validity

A formula is valid iff it is equivalent to T.

Two formulas α and β are equivalent iff α ↔ β is valid.

Example: Show “P” is equivalent to “¬¬P”.

P ¬P ¬¬P P ↔ ¬¬P
F T F T
T F T T
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Satisfiability (3.3.2)

Satisfiability

Definition: A formula is satisfiable if at least one assignment evaluates to true.

A formula is satisfiable iff its negation is not valid. (DeMorgan’s law in another form.)

Validity is kind of like “∀”.

Satisfiability is kind of like “∃”.

Determining whether a formula is satisfiable, efficiently, is a core problem in computer
science. Examples: Solving puzzles, finding successful plans, arranging items in space,
factoring, finding paths in graphs...
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Satisfiability (3.3.2)

Checking satisfiability and validity

Easy if few variables. Just write out the truth table!

P Q ¬Q ¬P Q ∨ ¬P ¬Q ∧ (Q ∨ ¬P)
F F T T T T
F T F T T F
T F T F F F
T T F F T F

If all rows are T: valid. If at least one row is T: satisfiable.

Blows up as the number of variables gets large. Need another way.

Theorem: A propositional formula is valid if and only if it can be proved using only the
proof rules we have introduced here (including proof by contradiction).
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