First-Order Logic
 Predicates and Quantifiers

Robert Y. Lewis

CS 02202024

February 5, 2024

Overview

1 DNF and CNF

- Propositions in Normal Form (3.4.1)

2 Extending our language

3 Translating to FOL

4 Proof rules for quantifiers

Refresher: validity and satisfiability

A propositional formula is valid if it is true under every possible assignment of truth values to its atoms. (All rows in the truth table come out T.)

A propositional formula is satisfiable if it is true under at least one truth assignment. (Some row in the truth table comes out T.)

Checking validity and satisfiability: a hard problem!

Disjunctive normal form

Definition: A formula in disjunctive normal form is an OR of terms, where each term is an AND of variables or negations of variables.
$(A \wedge B \wedge \neg C) \vee(\neg B \wedge C)$
$A \vee B \vee(A \wedge B \wedge \neg C)$
Not in DNF: $(A \wedge B) \vee \neg(B \wedge C)$

Disjunctive normal form is universal

Theorem: For every formula, there is an equivalent formula written in DNF.
Proof: You can read the terms off of the truth table, turning each "true" row into a conjunction of literals.

A	B	C	value		
\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}		
\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\leftarrow	$\neg A \wedge \neg B \wedge C$
\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}		
\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}		
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}		
\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\leftarrow	$A \wedge \neg B \wedge C$
\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{T}	\leftarrow	$A \wedge B \wedge \neg C$
\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{F}		
$(\neg A \wedge \neg B \wedge C) \vee(A \wedge \neg B \wedge C) \vee(A \wedge B \wedge \neg C)$					

Properties of disjunctive normal form

How big could the disjunctive normal form get? Big!
Definition: If every variable appears exactly once in every term in a disjunctive normal form expression, then it is in full disjunctive normal form.

Book	Wikipedia/me
disjunctive form	disjunctive normal form
disjunctive normal form	full disjunctive normal form

Given a formula in DNF (disjunctive normal form), can we determine whether it is satisfiable? Valid? Satisfiability is easy-a single term tells us a satisfying assignment. Validity is not obvious-a given term might exclude an assignment, but perhaps another picks it up?

Conjunctive normal form

Definition: A formula in conjunctive normal form is an AND of clauses, where each clause is an OR of variables or negations of variables.
$(\neg A \vee \neg B \vee C) \wedge(B \vee \neg C)$
$\neg A \wedge B \wedge(\neg A \vee C)$
Not an example: $\neg A \vee B \wedge(\neg A \vee C)$

Conjunctive normal form is universal

Theorem: For every formula, there is an equivalent formula written in CNF.
Proof: Negate the truth table. Write in DNF. Negate formula via DeMorgan's law. QED.

A	B	C	value	negated		
\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{F}		
\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{T}	\leftarrow	$\neg A \wedge \neg B \wedge C$
\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{F}		
\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{F}		
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{F}		
\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{T}	\leftarrow	$A \wedge \neg B \wedge C$
\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\leftarrow	$A \wedge B \wedge \neg C$
\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{F}		
DNF for negated: $(\neg A \wedge \neg B \wedge C) \vee \ldots$						
CNF: $(A \vee B \vee \neg C) \wedge \ldots$						

Properties of conjunctive normal form

How big could the conjunctive normal form get? Big.
Definition: If every variable appears in every clause in a conjunctive normal form expression, then it is in full conjunctive normal form.

Book	Wikipedia/me
conjunctive form	conjunctive normal form
conjunctive normal form	full conjunctive normal form

Given a formula in CNF (conjunctive normal form), can we determine whether it is satisfiable? Valid? Validity is easy now-a single clause throws out an assignment, so a single clause makes the formula not valid. Satisfiability is not so clear-each clause knocks out some assignments, but not clear if the set of clauses miss anything.

First-order Logic

The language of propositional logic: atoms and connectives. Every formula is either an atom, or one or more formulas related by a connective. $p \wedge q \rightarrow r$

The language of first-order (or predicate) logic:

- Variables: x, y, n, \ldots
- Function symbols: $f(x)$, plus $(a, b), \ldots$ (sometimes with notation)
- Predicate symbols: $P(x), R(x, y)$, Prime $(n), \ldots$ propositions with placeholders
- Quantifiers: \forall, \exists

■ ... and the same old connectives as before

Technical specification

A well-formed term in first-order logic is
■ a variable (x, y, n, \ldots), or

- a function symbol applied to the correct number of terms $(f(x)$, plus $(x, y), \ldots)$, or
- a constant symbol ($0,1, \emptyset, \ldots$)

Terms represent "things."
A well-formed formula in first-order logic is

- a predicate symbol applied to the correct number of terms ($R(x, y)$, Prime $(n), \ldots)$, or

■ one or more formulas joined by a connective $(P(x) \wedge Q(y), \neg R(x, y), \ldots$), or

- a quantifier, followed by a variable, followed by formula $(\forall x: \mathbb{N}, P(x) \wedge Q(x))$

Formulas represent "statements." (Like propositions?)

Concept Check

Let $=$ and R be predicate symbols and + and f be function symbols.
Which of the following are well-formed formulas?

■ $x=0 \vee x=1 \vee x=2$

- $f(x) \wedge f(y)$

■ $\forall x: \mathbb{Z}, x+0$
■ $\exists x: \mathbb{Z}, \forall y: \mathbb{Z}, R(f(x), f(y))$
■ $\forall x \wedge y=2$

Translations

From day 1:

- There is a perfect square whose final digit is 4. $\exists x: \mathbb{N}, \operatorname{PS}(x) \wedge(f d(x)=4)$
■ Every number is either prime or the product of two other numbers. $\forall n: \mathbb{N}$, $\operatorname{Prime}(n) \vee \exists p q: \mathbb{N}, n=p \cdot q$
■ Every number is either prime or the product of two smaller numbers.
$\forall n: \mathbb{N}, \operatorname{Prime}(n) \vee \exists p q: \mathbb{N},(p<n) \wedge(q<n) \wedge(n=p \cdot q)$
■ Every even integer greater than two is the sum of two primes. $\forall n: \mathbb{N}, \operatorname{Even}(n) \wedge(n>2) \rightarrow \exists p q: \mathbb{N}, \operatorname{Prime}(p) \wedge \operatorname{Prime}(q) \wedge(n=p+q)$

Try a few yourself!

You can make up some predicate and function symbols, like $T D(n)$ for "has two digits".

- $313\left(x^{3}+y^{3}\right)=z^{3}$ has no solution when $x, y, z \in \mathbb{Z}^{+}$.
- There is a two-digit perfect square whose final digit is 4 .

■ Every prime number greater than 2 is odd.

Try a few yourself!

- $313\left(x^{3}+y^{3}\right)=z^{3}$ has no solution when $x, y, z \in \mathbb{Z}^{+}$.
$\neg \exists x y z: \mathbb{Z}^{+}, 313\left(x^{3}+y^{3}\right)=z^{3}$
■ There is a two-digit perfect square whose final digit is 4 . $\exists n: \mathbb{N}, T D(n) \wedge P S(n) \wedge(f d(n)=4)$
- Every prime number greater than 2 is odd.
$\forall n: \mathbb{N}, \operatorname{Prime}(n) \wedge(n>2) \rightarrow \operatorname{Odd}(n)$

forall proof rules

Introduction: To prove a forall goal $\forall x: T, G(x)$:
Suppose you have a (new, freshly named) x : T in your context, and prove $G(x)$ for that new x.

I want to show that every number is either prime or the product of two other numbers. Suppose n is a number. Show that n is prime or n is the product of two other numbers.

Elimination: To use a forall hypothesis $\forall x: T, H(x)$:
If $t: T$ is any term of the right type, then you can add a hypothesis $H(t)$.
I know that every number is either prime or the product of two other numbers.
Therefore, I know that either 2 prime or 2 is the product of two other numbers. I know that either 5 is prime or 5 is the product of two other numbers...

Exists proof rules

To prove an existential goal $\exists x: T, G(x)$:
Provide a witness.
I want to show that there is a perfect square whose final digit is 4 . I claim that my witness is 64 . Then, I must show that 64 is a perfect square and the final digit of 64 is 4 .

Elimination: To use an existential hypothesis $\exists x: T, H(x)$:
you can create a (new, freshly named) $t: T$, and add a hypothesis $H(t)$. "Give a name to the witness."

I know that there is a perfect square whose final digit is 4 . Let's call this perfect square $p s$. I know that $p s$ is a perfect square and the final digit of $p s$ is 4 .

