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Propositions in Normal Form (3.4.1)

Refresher: validity and satisfiability

A propositional formula is valid if it is true under every possible assignment of truth
values to its atoms. (All rows in the truth table come out T.)

A propositional formula is satisfiable if it is true under at least one truth assignment.
(Some row in the truth table comes out T.)

Checking validity and satisfiability: a hard problem!
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Propositions in Normal Form (3.4.1)

Disjunctive normal form

Definition: A formula in disjunctive normal form is an OR of terms, where each term is an
AND of variables or negations of variables.

(A ∧ B ∧ ¬C) ∨ (¬B ∧ C)

A ∨ B ∨ (A ∧ B ∧ ¬C)

Not in DNF: (A ∧ B) ∨ ¬(B ∧ C)
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Propositions in Normal Form (3.4.1)

Disjunctive normal form is universal
Theorem: For every formula, there is an equivalent formula written in DNF.

Proof: You can read the terms off of the truth table, turning each “true” row into a
conjunction of literals.

A B C value
F F F F
F F T T ← ¬A ∧ ¬B ∧ C
F T F F
F T T F
T F F F
T F T T ← A ∧ ¬B ∧ C
T T F T ← A ∧ B ∧ ¬C
T T T F

(¬A ∧ ¬B ∧ C) ∨ (A ∧ ¬B ∧ C) ∨ (A ∧ B ∧ ¬C)
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Propositions in Normal Form (3.4.1)

Properties of disjunctive normal form

How big could the disjunctive normal form get? Big!

Definition: If every variable appears exactly once in every term in a disjunctive normal
form expression, then it is in full disjunctive normal form.

Book Wikipedia/me
disjunctive form disjunctive normal form
disjunctive normal form full disjunctive normal form

Given a formula in DNF (disjunctive normal form), can we determine whether it is
satisfiable? Valid? Satisfiability is easy—a single term tells us a satisfying assignment.
Validity is not obvious—a given term might exclude an assignment, but perhaps another
picks it up?
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Propositions in Normal Form (3.4.1)

Conjunctive normal form

Definition: A formula in conjunctive normal form is an AND of clauses, where each clause
is an OR of variables or negations of variables.

(¬A ∨ ¬B ∨ C) ∧ (B ∨ ¬C)

¬A ∧ B ∧ (¬A ∨ C)

Not an example: ¬A ∨ B ∧ (¬A ∨ C)
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Propositions in Normal Form (3.4.1)

Conjunctive normal form is universal
Theorem: For every formula, there is an equivalent formula written in CNF.

Proof: Negate the truth table. Write in DNF. Negate formula via DeMorgan’s law. QED.

A B C value negated
F F F T F
F F T F T ← ¬A ∧ ¬B ∧ C
F T F T F
F T T T F
T F F T F
T F T F T ← A ∧ ¬B ∧ C
T T F F T ← A ∧ B ∧ ¬C
T T T T F

DNF for negated: (¬A ∧ ¬B ∧ C)∨ ...
CNF: (A ∨ B ∨ ¬C)∧ ...
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Propositions in Normal Form (3.4.1)

Properties of conjunctive normal form

How big could the conjunctive normal form get? Big.

Definition: If every variable appears in every clause in a conjunctive normal form
expression, then it is in full conjunctive normal form.

Book Wikipedia/me
conjunctive form conjunctive normal form
conjunctive normal form full conjunctive normal form

Given a formula in CNF (conjunctive normal form), can we determine whether it is
satisfiable? Valid? Validity is easy now—a single clause throws out an assignment, so a
single clause makes the formula not valid. Satisfiability is not so clear—each clause
knocks out some assignments, but not clear if the set of clauses miss anything.
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First-order Logic

The language of propositional logic: atoms and connectives. Every formula is either an
atom, or one or more formulas related by a connective. p ∧ q→ r

The language of first-order (or predicate) logic:
Variables: x, y, n, ...
Function symbols: f(x), plus(a, b), ... (sometimes with notation)
Predicate symbols: P(x), R(x, y), Prime(n), ... propositions with placeholders
Quantifiers: ∀, ∃
... and the same old connectives as before
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Technical specification
A well-formed term in first-order logic is

a variable (x, y, n, ...), or
a function symbol applied to the correct number of terms (f(x), plus(x, y), ...), or
a constant symbol (0, 1, ∅, ...)

Terms represent "things."

A well-formed formula in first-order logic is
a predicate symbol applied to the correct number of terms (R(x, y), Prime(n), ...), or
one or more formulas joined by a connective (P(x) ∧ Q(y),¬R(x, y), ...), or
a quantifier, followed by a variable, followed by a formula (∀x : N, P(x) ∧ Q(x))

Formulas represent "statements." (Like propositions?)
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Concept Check

Let = and R be predicate symbols and + and f be function symbols.

Which of the following are well-formed formulas?

x = 0 ∨ x = 1 ∨ x = 2
f(x) ∧ f(y)
∀x : Z, x + 0
∃x : Z, ∀y : Z,R(f(x), f(y))
∀x ∧ y = 2
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Translations

From day 1:

There is a perfect square whose final digit is 4.
∃x : N, PS(x) ∧ (fd(x) = 4)
Every number is either prime or the product of two other numbers.
∀n : N, Prime(n) ∨ ∃p q : N, n = p · q
Every number is either prime or the product of two smaller numbers.
∀n : N, Prime(n) ∨ ∃p q : N, (p < n) ∧ (q < n) ∧ (n = p · q)
Every even integer greater than two is the sum of two primes.
∀n : N, Even(n) ∧ (n > 2)→∃p q : N, Prime(p) ∧ Prime(q) ∧ (n = p + q)
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Try a few yourself!

You can make up some predicate and function symbols, like TD(n) for "has two digits".

313(x3 + y3) = z3 has no solution when x, y, z ∈ Z+.
There is a two-digit perfect square whose final digit is 4.
Every prime number greater than 2 is odd.
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Try a few yourself!

313(x3 + y3) = z3 has no solution when x, y, z ∈ Z+.
¬∃x y z : Z+, 313(x3 + y3) = z3

There is a two-digit perfect square whose final digit is 4.
∃n : N, TD(n) ∧ PS(n) ∧ (fd(n) = 4)
Every prime number greater than 2 is odd.
∀n : N, Prime(n) ∧ (n > 2)→ Odd(n)
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forall proof rules

Introduction: To prove a forall goal ∀x : T,G(x):
Suppose you have a (new, freshly named) x : T in your context, and prove G(x) for that
new x.

I want to show that every number is either prime or the product of two other numbers.
Suppose n is a number. Show that n is prime or n is the product of two other numbers.

Elimination: To use a forall hypothesis ∀x : T,H(x):
If t : T is any term of the right type, then you can add a hypothesis H(t).

I know that every number is either prime or the product of two other numbers.
Therefore, I know that either 2 prime or 2 is the product of two other numbers. I know
that either 5 is prime or 5 is the product of two other numbers...
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Exists proof rules

To prove an existential goal ∃x : T,G(x):
Provide a witness.

I want to show that there is a perfect square whose final digit is 4. I claim that my
witness is 64. Then, I must show that 64 is a perfect square and the final digit of 64 is 4.

Elimination: To use an existential hypothesis ∃x : T,H(x):
you can create a (new, freshly named) t : T, and add a hypothesis H(t). "Give a name to
the witness."

I know that there is a perfect square whose final digit is 4. Let’s call this perfect square
ps. I know that ps is a perfect square and the final digit of ps is 4.
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