Sets Definitions (4.1–4.1.1)

Sets Operations (4.1.2–4.1.5)

The Language of Set Theory

Robert Y. Lewis

CS 0220 2024

February 9, 2024

Sets Definitions (4.1–4.1.1)

Sets Operations (4.1.2–4.1.5)

Overview

1 Sets Definitions (4.1–4.1.1)

2 Sets Operations (4.1.2–4.1.5)

Mathematical languages

We're building up a *formal language* for talking about propositions.

Natural language is confusing and ambiguous. Ours is not. (Fingers crossed!)

A new part of our language today: *sets*. Are we *defining* sets? Or introducing them as an *atomic concept*?

Either way! Really useful *vocabulary* for talking about things, mathematical and otherwise.

Set Definition

- Definition (informal): A set is a bunch/collection/group of objects.
- Definition: The *elements* of the set are the objects contained in that set.
- Sets can contain numbers, ordered sequences of numbers, strings, names, or other sets.
- Objects are either *in* the set or *not in* the set. We don't have a concept of an object being in a set multiple times. It's a Boolean property.
- We write curly braces around a comma-separated list to build a set.

Examples:

- $\blacksquare H = \{ Allie, Carmen, Jania, Joseph, Tyler \}$
- *I* = { this computer, this slide clicker, that projector screen }
- $J = \{$ "this computer", "this slide clicker", "that projector screen" $\}$
- $\blacksquare \mathbb{N} = \{0, 1, 2, 3, 4, \ldots\}$

Elements

- $\blacksquare H = \{ Allie, Carmen, Jania, Joseph, Tyler \}$
- $\blacksquare I = \{ \text{ this computer, this slide clicker, that projector screen } \}$
- $\blacksquare \mathbb{N} = \{0, 1, 2, 3, 4, \ldots\}$

Definition: We say say $x \in S$ if x is an element of or in or a member of the set S.

- **Tyler** \in *H*?
- this computer $\in H$?
- this computer $\in I$?
- Jania $\in \mathbb{N}$?

- Yes.
- No. This computer $\notin H$.
- Yes.
- No. Jania $\notin \mathbb{N}$.

Sets of sets

- $A = \{1, 4, 9\}$ $B = \{\{1, \{4\}\}, \{9\}\}$
 - $\bullet \ 1 \in A?$
 - 1 ∈ *B*?
 - $\blacksquare \exists x, x \in B \land 1 \in x?$

- Yes.
- No, but $\{1, \{4\}\} \in B$.
- Yes, $x = \{1, \{4\}\} \in B \text{ and } 1 \in x$.

Some Sets of Numbers

- $\emptyset = \{\}$ (empty set, null set)
- $\mathbb{N} = \{0, 1, 2, 3, 4, \ldots\}$ (non-negative integers)

■
$$\mathbb{Z} = \{ \dots, -3, -2, -1, 0, 1, 2, 3, \dots \}$$
 (integers)

■
$$\mathbb{Q} = \{1/2, -4/15, 21, \ldots\}$$
 (rationals)

•
$$\mathbb{R} = \{\sqrt{2}, -\pi, 21, \ldots\}$$
 (real numbers)

■
$$\mathbb{C} = \{i/2, 15 - i, \sqrt{7}, 21, ...\}$$
 (complex numbers)

Superscript plus limits to (strictly!) positive values: $\mathbb{Z}^+ = \mathbb{N}^+$.

Superscript minus limits to negative values: $21 \notin \mathbb{R}^-$.

Subsets

Definition: One set is a *subset* of another if every element of the first set is also an element of the second.

We write $S \subseteq T$ to say the set *S* is a subset of set *T*. So, $S \subseteq T$ means $\forall x \in S, x \in T$. Could also write $\forall x, x \in S \rightarrow x \in T$.

Examples:

- **•** $\mathbb{N} \subseteq \mathbb{Z}$? Yes, every positive integer is also an integer.
- $\mathbb{Z}^+ \subseteq \mathbb{N}$? Yes, every positive integer is also a non-negative integer.
- $\mathbb{C} \subseteq \mathbb{Z}$? No, $\mathbb{C} \not\subseteq \mathbb{Z}$. Some (many!) complex numbers are not integers. Although, $\mathbb{Z} \subseteq \mathbb{C}$.
- \blacksquare $\mathbb{N} \subseteq \mathbb{N}$. Yes, if sets are equal, all of the first must also be in the second!

Note: $\{1, 2, 3\} \subseteq \{1, 2, 3, 4\}$ looks a little bit like $3 \le 4$. We write $A \subset B$ to rule out equality (like a < b).

Operations on sets: Union

- $\blacksquare A = \{j, o, s, e, p, h\}$
- $\blacksquare B = \{j, a, n, i\}$
- $\blacksquare C = \{a, l, i, e\}$
- $\blacksquare D = \{t, y, l, e, r\}$
- $\blacksquare E = \{c, a, r, m, e, n\}$

Definition: The *union* of sets X and Y, $X \cup Y$, consists of every element that is in either X or Y. In other words, $z \in X \cup Y$ means $z \in X \lor z \in Y$.

Example: $B \cup C = \{j, a, n, i, l, e\}$. Order doesn't matter: = $\{a, e, i, j, l, n\}$

Operations on sets: Intersection

- $\blacksquare A = \{j, o, s, e, p, h\}$
- $\blacksquare B = \{j, a, n, i\}$
- $\blacksquare C = \{a, l, i, e\}$
- $\blacksquare D = \{t, y, l, e, r\}$
- $\blacksquare E = \{c, a, r, m, e, n\}$

Definition: The *intersection* of sets X and Y, $X \cap Y$, consists of every element that is in both X and Y. In other words, $z \in X \cap Y$ means $z \in X \land z \in Y$.

Example: $A \cap E = \{e\}$. $B \cap D = \emptyset$

Operations on sets: Set difference

- $\blacksquare A = \{j, o, s, e, p, h\}$
- $\blacksquare B = \{j, a, n, i\}$
- $\blacksquare C = \{a, l, i, e\}$
- $\blacksquare D = \{t, y, l, e, r\}$
- $\blacksquare E = \{c, a, r, m, e, n\}$

Definition: The set difference of sets X and Y, $X \setminus Y$, consists of every element that is in X but not in Y. In other words, $z \in X \setminus Y$ means $z \in X \wedge z \notin Y$.

```
Example: C \setminus B = \{l, e\}.
```

```
Example: E \setminus D = \{c, a, m, n\}.
```

Operations on sets: Symmetric difference

$$\blacksquare A = \{j, o, s, e, p, h\}$$

- $\blacksquare B = \{j, a, n, i\}$
- $\bullet C = \{a, l, i, e\}$
- $\blacksquare D = \{t, y, l, e, r\}$
- $\blacksquare E = \{c, a, r, m, e, n\}$

Definition: The symmetric difference of sets X and Y, $X \triangle Y$, consists of every element that is in X but not in Y or in Y but not X. In other words, $z \in X \triangle Y$ means $(z \in X \land z \notin Y) \lor (z \in Y \land z \notin X)$. That is, $z \in X \text{ XOR } z \in Y$.

Example: $A \triangle B = \{o, s, e, p, h, a, n, i\}$.

Example: $C \triangle D = \{a, i, r, t, y\}$. (Remember: order doesn't matter)

Operations on sets: Complement

- $\blacksquare A = \{j, o, s, e, p, h\}$
- $\blacksquare B = \{j, a, n, i\}$
- $\blacksquare C = \{a, l, i, e\}$
- $\blacksquare D = \{t, y, l, e, r\}$
- $\blacksquare E = \{c, a, r, m, e, n\}$

Definition: The *complement* of a set X, \overline{X} , is defined with respect to some universe of possible elements U. It consists of every possible element that is not in X. In other words, $\overline{X} = U \setminus X$.

Example: If U is the universe of all letters in English, $\overline{A} = \{a, b, c, d, f, g, i, k, l, m, n, q, r, t, u, v, w, x, y, z\}$.

Example: If $U = \mathbb{Z}$, $\mathbb{Z}^- = \overline{\mathbb{Z}^+} \setminus \{0\}$.

Sets Definitions (4.1–4.1.1)

Disjoint sets

Definition: Sets X and Y are *disjoint* if they have no elements in common. $X \cap Y = \emptyset$ or $X \subset \overline{Y}$.

Operations on sets: Power set

- $\blacksquare A = \{j, o, s, e, p, h\}$
- $\blacksquare B = \{j, a, n, i\}$
- $\blacksquare C = \{a, l, i, e\}$
- $\blacksquare D = \{t, y, l, e, r\}$
- $\blacksquare E = \{c, a, r, m, e, n\}$

Definition: The *power set* of a set X, $\mathcal{P}(X)$, is the set of all subsets of X. In other words, $\forall x \in \mathcal{P}(X), x \subseteq X$ and $\forall x \subseteq X, x \in \mathcal{P}(X)$.

Example: $\mathcal{P}(\{r, o, b\}) = \{\{\}, \{r\}, \{o\}, \{b\}, \{r, o\}, \{r, b\}, \{o, b\}, \{r, o, b\}\}.$

Example: $\mathcal{P}(B) = \{\{\}, \{j\}, \{a\}, \{n\}, \{i\}, \{j, a\}, \{j, n\}, \{j, i\}, \{a, n\}, \dots, \{j, a, n, i\}\}.$ Example: $\mathcal{P}(\emptyset) = \{\emptyset\}.$

Operations on sets: Cardinality

- $\blacksquare A = \{j, o, s, e, p, h\}$
- $\blacksquare B = \{j, a, n, i\}$
- $\bullet C = \{a, l, i, e\}$
- $\blacksquare D = \{t, y, l, e, r\}$
- $\blacksquare E = \{c, a, r, m, e, n\}$

Definition: The *cardinality* of a set X, |X|, is the count of the number of (unique) elements in X.

Example:
$$|A| = 6$$
, $|B| = 4$, $|C| = 4$, $|D| = 5$, $E = 6$

Example: $|\emptyset| = 0$.

Example: If |A| = n, $|\mathcal{P}(A)| = 2^n$. Each subset consists of a decision of whether to include or not include (2 possibilities) each of the *n* elements of *A*.

Building sets with predicates

General form: { description of a set | filter on the set }. Examples:

■
$$A = \{n \in \mathbb{N} \mid n = 2k + 1 \text{ for some integer } k\}$$

■ $B = \{x \in \mathbb{R} \mid x^2 > 1\}$

Note: Python has a notation for this idea.

Products of sets

- $C = \{2, 5\}$
- $\blacksquare D = \{a, b, c\}$
- $\blacksquare C \times D = \{(2, a), (2, b), (2, c), (5, a), (5, b), (5, c)\}$
- $\blacksquare \mathbb{N} \times D = \{(0, a), (0, b), (0, c), (1, a), (1, b), \ldots\}$
- $\blacksquare \ \mathbb{N} \times \mathbb{N} = \text{the set of } ordered \ pairs \ \text{of natural numbers}$

Ordered pair: (2, 0) is not the same as (0, 2)!

Concept check

•
$$E = \{n \in \mathbb{N} \mid n \text{ is even}\}$$
, the even natural numbers
• $T = \{n \in \mathbb{N} \mid n < 10\}$
• $U = \{1, 2, 3\}$

What are the following sets?

- $\blacksquare \ E \cap T$
- $\blacksquare \ T \cup U$
- $\blacksquare U \setminus E$
- ■Ē

■Ē

Concept check: answers

- $E = \{n \in \mathbb{N} \mid n \text{ is even}\}, \text{ the even natural numbers}$
- $T = \{n \in \mathbb{N} \mid n < 10\}$ $U = \{1, 2, 3\}$

What are the following sets?

- $\blacksquare E \cap T$ \blacksquare {0, 2, 4, 6, 8}
- $\blacksquare T \cup U$ \blacksquare {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} $\blacksquare U \setminus E$
 - {1,3}
 - $\blacksquare \{n \in \mathbb{N} \mid n \text{ is odd}\}$