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Mathematical languages

We’re building up a formal language for talking about propositions.

Natural language is confusing and ambiguous. Ours is not. (Fingers crossed!)

A new part of our language today: sets. Are we defining sets? Or introducing them as an
atomic concept?

Either way! Really useful vocabulary for talking about things, mathematical and
otherwise.
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Set Definition
Definition (informal): A set is a bunch/collection/group of objects.

Definition: The elements of the set are the objects contained in that set.

Sets can contain numbers, ordered sequences of numbers, strings, names, or other sets.

Objects are either in the set or not in the set. We don’t have a concept of an object being
in a set multiple times. It’s a Boolean property.

We write curly braces around a comma-separated list to build a set.

Examples:
H = { Allie, Carmen, Jania, Joseph, Tyler }
I = { this computer, this slide clicker, that projector screen }
J = { “this computer”, “this slide clicker”, “that projector screen” }
N = {0, 1, 2, 3, 4, . . .}
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Elements

H = { Allie, Carmen, Jania, Joseph, Tyler }
I = { this computer, this slide clicker, that projector screen }
N = {0, 1, 2, 3, 4, . . .}

Definition: We say say x ∈ S if x is an element of or in or a member of the set S.

Tyler ∈ H?
this computer ∈ H?
this computer ∈ I?
Jania ∈ N?

Yes.
No. This computer /∈ H.
Yes.
No. Jania /∈ N.
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Sets of sets

A = {1, 4, 9}
B = {{1, {4}}, {9}}

1 ∈ A?
1 ∈ B?
∃x, x ∈ B ∧ 1 ∈ x?

Yes.
No, but {1, {4}} ∈ B.
Yes, x = {1, {4}} ∈ B and 1 ∈ x.
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Some Sets of Numbers

∅ = {} (empty set, null set)
N = {0, 1, 2, 3, 4, . . .} (non-negative integers)
Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .} (integers)
Q = {1/2,−4/15, 21, . . .} (rationals)
R = {

√
2,−π, 21, . . .} (real numbers)

C = {i/2, 15 − i,
√

7, 21, . . .} (complex numbers)

Superscript plus limits to (strictly!) positive values: Z+ = N+.

Superscript minus limits to negative values: 21 /∈ R−.
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Subsets
Definition: One set is a subset of another if every element of the first set is also an
element of the second.

We write S ⊆ T to say the set S is a subset of set T. So, S ⊆ T means ∀x ∈ S, x ∈ T. Could
also write ∀x, x ∈ S → x ∈ T.

Examples:
N ⊆ Z? Yes, every positive integer is also an integer.
Z+ ⊆ N? Yes, every positive integer is also a non-negative integer.
C ⊆ Z? No, C ̸⊆ Z. Some (many!) complex numbers are not integers. Although,
Z ⊆ C.
N ⊆ N. Yes, if sets are equal, all of the first must also be in the second!

Note: {1, 2, 3} ⊆ {1, 2, 3, 4} looks a little bit like 3 ≤ 4.
We write A ⊂ B to rule out equality (like a < b).
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Operations on sets: Union

A = {j, o, s, e, p, h}
B = {j, a, n, i}
C = {a, l, i, e}
D = {t, y, l, e, r}
E = {c, a, r,m, e, n}

Definition: The union of sets X and Y , X ∪ Y , consists of every element that is in either X
or Y . In other words, z ∈ X ∪ Y means z ∈ X ∨ z ∈ Y .

Example: B ∪ C = {j, a, n, i, l, e}. Order doesn’t matter: = {a, e, i, j, l, n}
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Operations on sets: Intersection

A = {j, o, s, e, p, h}
B = {j, a, n, i}
C = {a, l, i, e}
D = {t, y, l, e, r}
E = {c, a, r,m, e, n}

Definition: The intersection of sets X and Y , X ∩ Y , consists of every element that is in
both X and Y . In other words, z ∈ X ∩ Y means z ∈ X ∧ z ∈ Y .

Example: A ∩ E = {e}. B ∩ D = ∅
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Operations on sets: Set difference

A = {j, o, s, e, p, h}
B = {j, a, n, i}
C = {a, l, i, e}
D = {t, y, l, e, r}
E = {c, a, r,m, e, n}

Definition: The set difference of sets X and Y , X \ Y , consists of every element that is in X
but not in Y . In other words, z ∈ X \ Y means z ∈ X ∧ z /∈ Y .

Example: C \ B = {l, e}.

Example: E \ D = {c, a,m, n}.
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Operations on sets: Symmetric difference

A = {j, o, s, e, p, h}
B = {j, a, n, i}
C = {a, l, i, e}
D = {t, y, l, e, r}
E = {c, a, r,m, e, n}

Definition: The symmetric difference of sets X and Y , X△Y , consists of every element that
is in X but not in Y or in Y but not X. In other words, z ∈ X△Y means
(z ∈ X ∧ z /∈ Y) ∨ (z ∈ Y ∧ z /∈ X). That is, z ∈ X XOR z ∈ Y .

Example: A△B = {o, s, e, p, h, a, n, i}.

Example: C△D = {a, i, r, t, y}. (Remember: order doesn’t matter)
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Operations on sets: Complement

A = {j, o, s, e, p, h}
B = {j, a, n, i}
C = {a, l, i, e}
D = {t, y, l, e, r}
E = {c, a, r,m, e, n}

Definition: The complement of a set X, X, is defined with respect to some universe of
possible elements U. It consists of every possible element that is not in X. In other
words, X = U \ X.

Example: If U is the universe of all letters in English, A =
{a, b, c, d, f , g, i, k, l,m, n, q, r, t, u, v,w, x, y, z}.

Example: If U = Z, Z− = Z+ \{0}.
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Disjoint sets

Definition: Sets X and Y are disjoint if they have no elements in common.

X ∩ Y = ∅ or

X ⊆ Y .
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Operations on sets: Power set

A = {j, o, s, e, p, h}
B = {j, a, n, i}
C = {a, l, i, e}
D = {t, y, l, e, r}
E = {c, a, r,m, e, n}

Definition: The power set of a set X, P(X), is the set of all subsets of X. In other words,
∀x ∈ P(X), x ⊆ X and ∀x ⊆ X, x ∈ P(X).

Example: P({r, o, b}) = {{}, {r}, {o}, {b}, {r, o}, {r, b}, {o, b}, {r, o, b}}.

Example: P(B) = {{}, {j}, {a}, {n}, {i}, {j, a}, {j, n}, {j, i}, {a, n}, . . . , {j, a, n, i}}.

Example: P(∅) = {∅}.
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Operations on sets: Cardinality

A = {j, o, s, e, p, h}
B = {j, a, n, i}
C = {a, l, i, e}
D = {t, y, l, e, r}
E = {c, a, r,m, e, n}

Definition: The cardinality of a set X, |X|, is the count of the number of (unique) elements
in X.

Example: |A| = 6, |B| = 4, |C| = 4, |D| = 5, E = 6

Example: |∅| = 0.

Example: If |A| = n, | P(A)| = 2n. Each subset consists of a decision of whether to
include or not include (2 possibilities) each of the n elements of A.
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Building sets with predicates

General form: { description of a set | filter on the set }.
Examples:

A = {n ∈ N | n = 2k + 1 for some integer k}
B = {x ∈ R | x2 > 1}

Note: Python has a notation for this idea.
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Products of sets

C = {2, 5}
D = {a, b, c}

C × D = {(2, a), (2, b), (2, c), (5, a), (5, b), (5, c)}
N× D = {(0, a), (0, b), (0, c), (1, a), (1, b), . . .}
N× N = the set of ordered pairs of natural numbers

Ordered pair: (2, 0) is not the same as (0, 2)!
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Concept check

E = {n ∈ N | n is even}, the even natural numbers
T = {n ∈ N | n < 10}
U = {1, 2, 3}

What are the following sets?
E ∩ T
T ∪ U
U \ E
Ē
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Concept check: answers

E = {n ∈ N | n is even}, the even natural numbers
T = {n ∈ N | n < 10}
U = {1, 2, 3}

What are the following sets?

E ∩ T
T ∪ U
U \ E
Ē

{0, 2, 4, 6, 8}
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
{1, 3}
{n ∈ N | n is odd}
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