Random Variables and Expectations

Michael L. Littman

CS 0220 2021

July 16, 2021
Overview

Random Variable Examples (18.1)
 Indicator Random Variables (18.1.1)
 Random Variables and Events (18.1.2)

Great Expectations (18.4)
 The Expected Value of a Uniform Random Variable (18.4.1)
 The Expected Value of a Reciprocal Random Variable (18.4.2)
Numerical Values of Outcomes

Sometimes it makes sense to attach a numerical value to the outcome of a probability space.

Example: We ask people to name all the planets they can.

- Earth, Mars
- Earth, Neptune, Mars, Saturn
- Mercury, Venus, Earth, Mars, Jupiter, Saturn, Neptune, Uranus
- Mars, Jupiter

How many outcomes? $2^8 = 256$, assuming we ignore any fictional planets they name like “Tatooine” or “Pluto”.

If we want to summarize the results, we might assign each outcome a statistic, that is, a numerical summary. A natural choice is the number of planets they named: 2, 4, 8, 2.
Random Variable

Definition: A random variable R on a probability space is a function whose domain is the sample space.

Example: Let’s say the sample space is a deck of cards and R maps a number card to its value and a face card to 10 and ace to 1. So, $R(2\heartsuit) = 2$ and $R(J\spadesuit) = 10$.

Typically, codomain of R is subset of reals. A random variable is used kind of like a variable, but it is “implemented” as a function.
Coin example

We flip 3 fair coins. Let C be the random variable that is the number of coins that come up heads. Let M be a random variable that is 1 if all three coins come up heads or all three coins come up tails and 0 otherwise. They are random variables in that they map all possible outcomes to values, integers in this case.

Example: $C(THH) = 2$. $M(THH) = 0$. $C(TTT) = 0$. $M(TTT) = 1$.

C is counting the number of heads, M tells us whether or not all the coins match.
In terms of sample space

\[S = \{ \text{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT} \} \]

\[
\begin{align*}
C(\text{HHH}) &= 3 & C(\text{THH}) &= 2 \\
C(\text{HHT}) &= 2 & C(\text{THT}) &= 1 \\
C(\text{HTH}) &= 2 & C(\text{TTT}) &= 1 \\
C(\text{HTT}) &= 1 & C(\text{TTT}) &= 0 \\
M(\text{HHH}) &= 1 & M(\text{THH}) &= 0 \\
M(\text{HHT}) &= 0 & M(\text{THT}) &= 0 \\
M(\text{HTH}) &= 0 & M(\text{TTT}) &= 0 \\
M(\text{HTT}) &= 0 & M(\text{TTT}) &= 1
\end{align*}
\]
Definition

Definition: An *indicator random variable* is a random variable that maps every outcome to either 0 or 1. Indicator random variables are also called *Bernoulli variables*.

Example: The random variable M. It “indicates” whether the three coins match.

Connection between indicator random variables and events. Recall, an event is a subset of the sample space—a set of outcomes. An indicator random variable can be interpreted as a set, since it maps each outcome to whether it is *in* the set (1) or *out* of the set (0).

If E is an event, we can define the corresponding indicator random variable I_E, where $I_E(\omega) = 1$ if $\omega \in E$ and 0 otherwise.

Example: If we take E to be the event where all 3 coins match, $M = I_E$.
Partitioning outcome space

An indicator random variable partitions outcome space:

\[
\begin{align*}
&\text{HHT HTH HTT THH THT TTH} \\
&M=0
\\
&\text{HHH TTT} \\
&M=1
\end{align*}
\]

So does any other random variable:

\[
\begin{align*}
&\text{TTT} \\
&C=0
\\
&\text{HHT HTH THH} \\
&C=2
\\
&\text{HHH} \\
&C=3
\end{align*}
\]
Statements about random variables

Each block is a subset of the sample space and therefore an event.
The assertion that $C = 2$ defines an event: $\{THH, HTH, HHT\}$.
$\Pr[M = 1] = 1/4$.

Statements about random variables can also be viewed as events.
$\Pr[C \leq 1] = 1/2$.
$\Pr[M \cdot C \text{ is odd}] = 1/8$.

This last statement is a funny way of saying “all heads”. Why?
Concept

The *expected value* (often *expectation*) of a random variable is its mean or probability weighted average.

Example: Define a random variable R to be the alphabetic position of the first letter of the outcome of a coin flip, $R(H) = 8$, $R(T) = 20$. The expected value of R is 14. It is $1/2 \times 8 + 1/2 \times 20$.

We write $\mathbb{E}[R] = 14$. (Book uses “Ex”, but I can’t pretend that’s ever used.)

Suppose we select a student uniformly at random from the class, and let R be the student’s homework 2 score. Then, $\mathbb{E}[R]$ is just the class average. The expected value is a useful thing to know.
Definition

Definition: If R is a random variable defined on a sample space S, then the expectation of R is

\[\mathbb{E}[R] := \sum_{\omega \in S} R(\omega) \Pr[\omega]. \]

Example:

\[\mathbb{E}[C] = \frac{0+1+1+1+2+2+2+3}{8} = \frac{3}{2}. \]

Example:

\[\mathbb{E}[M] = \frac{1+0+0+0+0+0+0+1}{8} = \frac{1}{4}. \]

Exercise for the reader: If E is an event, $\Pr[E] = \mathbb{E}[I_E]$.
Do a die

Let R be the random variable corresponding to a fair die. Here, the outcomes are numbers, so we’ll just define $R(\omega) = \omega$.

$$E[R] = \frac{1+2+3+4+5+6}{6} = 7/2 \text{ or } 3.5.$$

Does that mean we expect the die to come up 3.5? No, it will never come up 3.5. Maybe “expected value” was a bad choice of name. Shrug.

In general, if R is a random variable with a uniform distribution over $[1, n]$, $E[R] = \sum_{i=1}^{n} i \cdot \frac{1}{n} = \frac{1}{n} \sum_{i=1}^{n} i = \frac{1}{n} n(n+1)/2 = (n+1)/2$.

One and die

Let R again be the random variable corresponding to a fair die.

\[1 + E[R] = 1 + 3.5 = 4.5. \]

\[E[1 + R] = \frac{2+3+4+5+6+7}{6} = \frac{27}{6} = \frac{9}{2} \text{ or } 4.5. \]

Sometimes the expectation of a function matches the function of the expectation.
One over die

Let R again be the random variable corresponding to a fair die.

$$\frac{1}{\mathbb{E}[R]} = \frac{1}{3.5} = \frac{2}{7} \text{ (.29 ish)}. $$

$$\mathbb{E}\left[\frac{1}{R}\right] = \frac{1+1/2+1/3+1/4+1/5+1/6}{6} = \frac{49}{120} \text{ (.41 ish)}. $$

Sometimes the expectation of a function matches the function of the expectation. Sometimes not.